Cloud and Snow Segmentation in Satellite Images Using an Encoder–Decoder Deep Convolutional Neural Networks

نویسندگان

چکیده

The segmentation of cloud and snow in satellite images is a key step for subsequent image analysis, interpretation, other applications. In this paper, method based on deep convolutional neural network (DCNN) with enhanced encoder–decoder architecture—ED-CNN—is proposed. method, the atrous spatial pyramid pooling (ASPP) module used to enhance encoder, while decoder fusion features from different stages which improves accuracy. Comparative experiments show that proposed superior DeepLabV3+ Xception ResNet50. Additionally, rough-labeled dataset containing 23,520 fine-labeled data consisting 310 TH-1 are created, where we studied relationship between quality quantity labels performance segmentation. Through same datasets, found related more closely rather than their quality. Namely, under labeling consumption, using only performs better plus 10% images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Road Segmentation in SAR Satellite Images with Deep Fully-Convolutional Neural Networks

Remote sensing is extensively used in cartography. As transportation networks expand, extracting roads automatically from satellite images is crucial to keep maps up-to-date. Synthetic Aperture Radar (SAR) satellites can provide high resolution topographical maps. However roads are difficult to identify in SAR images as they look visually similar to other objects like rivers and railways. Deep ...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Classification and Segmentation of Satellite Orthoimagery Using Convolutional Neural Networks

The availability of high-resolution remote sensing (HRRS) data has opened up the possibility for new interesting applications, such as per-pixel classification of individual objects in greater detail. This paper shows how a convolutional neural network (CNN) can be applied to multispectral orthoimagery and a digital surface model (DSM) of a small city for a full, fast and accurate per-pixel cla...

متن کامل

Deep Convolutional Neural Networks and Noisy Images

The presence of noise represent a relevant issue in image feature extraction and classification. In deep learning, representation is learned directly from the data and, therefore, the classification model is influenced by the quality of the input. However, the ability of deep convolutional neural networks to deal with images that have a different quality when compare to those used to train the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ISPRS international journal of geo-information

سال: 2021

ISSN: ['2220-9964']

DOI: https://doi.org/10.3390/ijgi10070462